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The Effect of Small Ellipsoidal Material on
the Resonant Frequency of a Cavity

We assume that the medium inside the cavity has no losses with  farads/meter

and μ = μo = 4π × 10-7 henrys/meter.  Excited at resonance, the fields inside the cavity can be
written in the form

.

The electric and magnetic fields are 90° out of phase.  In other words, if Eo is real Ho  is imagi-

nary and vice versa.  Insertion of a small piece of material with ε ≠ εo and μ ≠ μo  will change
the field values and the resonant frequency

(1)

Note that δω will be a complex quantity if the inserted material is lossy.  Substitution of equa-
tions (1) in Maxwell’s equations

give

curl (Eo + E1) = – j(ω + δω) (Βo + B1)

curl (Ho + H1) = j(ω + δω) (Do + D1).

Noting that the fields Eo, Do, Ho and Bo satisfy the same Maxwell’s equations we obtain:
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Multiplication of equation (2a) by Ho and equation (2b) by Eo and addition give

(3)

Using the vector relation

div (A × B) = B  ⋅ curl A - A ⋅  curl B

we can rewrite the L.H.S. of equation (3) in the form

or

(4)

Comparison of equations (3) and (4) gives

j(ω+δω) (Eo⋅ D1 - Ho ⋅ B1) + jδω(Eo⋅ Do - Ho ⋅ Bo)

  = jω(E1 ⋅ Do - H1 ⋅ Bo) - div (Ho × E1 + Eo × H1)

In practice ω >> δω so that in the expression (ω + δω) (Eo⋅ D1 - Ho ⋅ B1) we can neglect δω with

respect to ω and obtain

jω(Eo ⋅ D1  -  Ho ⋅ B1 - E1 ⋅  Do + H1 ⋅ Bo) + jδω(Eo ⋅ Do - Ho ⋅ Bo)

= - div (Ho × E1 + Eo × H1). (5)

Outside the ellipsoid we have
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Do = εoEo ,    D1 = εoE1,   Bo = μoHo ,    B1 = μoH1,

and equation (5) reduces to

jδω(Eo ⋅ Do - Ho ⋅ Bo) = - div (Ho × E1 + Eo × H1).

We integrate this equation over the volume bounded by the cavity wall and the surface of the ellip-
soid

(6)

where V = volume of the cavity

and ΔV = volume of the ellipsoid.

Using the divergence theorem, the R.H.S. of equation (6) can be written as a surface integral

where s + Δs is the surface bounding the volume V-ΔV.  Since the cavity is assumed to be a good
conductor, Eo and E1 will be practically perpendicular to the cavity surface and the contribution of
the cavity wall to the surface integral can be neglected.  In this case we find

(7)

where Δs = surface of the ellipsoid.  Note that ds is in the direction of the now outward normal to
the ellipsoid surface.  Inside the ellipsoid we have

D1 = εoE1 + P     and     B1 = μoH1 + M

where P = polarization or electric dipole moment per unit volume, and

M = magnetization or magnetic dipole moment per unit volume.

Substitution in equation (5) gives

jω(Eo ⋅ P - HoM) + jδω(Eo ⋅ Do - Ho ⋅ Bo) =  - div (Ho × Ε1 + Εo  × Η1).

Integrating over the volume of the ellipsoid and using the divergence theorem we obtain
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Comparison of equations (7) and (8) and some manipulation gives

or, since Ho and Bo are imaginary if Eo and Do are real, we can write

(9)

where U = cavity stored energy and Eo, P, Ho and M are now all real quantities.  For the small
region in and around the ellipsoid, Eo and Ho are practically uniform.  For an ellipsoid of semi-
axis a, b and c with a field parallel to the a-axis, P and M are given by (see M. Mason and W.
Weaver, Dover Publications, § 36).

where εr = relative permittivity, μr = relative permeability, and

Axial Symmetrical Ellipsoid

For axial symmetry about the a-axis we have b = c, and this reduces the integral to an elementary
one,
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Performing the integration we find for a oblate spheroid (a < b)

and for a prolate spheroid (a > b)

For both cases the spheroid reduces to a sphere for e → 0 and L = 1/3.  For the limit as a → 0
(e →   ∞  ), the oblate spheroid becomes a circular disk of radius b and L = 1.  On the other hand,
as b → 0 the prolate spheroid becomes a very thin rod of length 2a and L = 0.

If the field is perpendicular to the axis of revolution we have

For a prolate spheroid (a > b) we find

.

For an oblate spheroid (a < b)) we find

In both cases for e → 0 (sphere), L = 1/3.  For the prolate spheroid for e = 1 (rod), L = 1/2.  For
the oblate spheroid for e = ∞ (disk), L = 0.
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(1) Dielectric Sphere:

(2) Metal Sphere:

Radius R, μr = O, εr = ∞,  P = 3εoEo,  M = -3/2 μoHo

.

(3) Dielectric Needle:

Parallel to Eo, volume ΔV, P = (εr - 1) εoEo, M = O

.

(4) Metal Needle:

Perpendicular to Eo and parallel to Ho, volume ΔV, P = 2 εoEo, M = -μoHo

.

(5) Dielectric Disk:

Perpendicular to Eo, volume ΔV,

.

(6) Metal Needle Parallel to Eo and Metal Disk Parallel or Perpendicular to Eo
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For the metal needle parallel to Eo, the approximation of  is not valid since

for L = 0, P → ∞. For the metal disk, the approximation  is not valid since

for L = 0, P → ∞ and for L = 1, M → ∞. In these cases, the actual value of L must be calculated

and substituted in  and .
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